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The Krupka  and  Trau tman method for the description of all generally 
invariant functions of the components of geometrical object fields is 
applied to the invariants of second degree of the metrical field and other 
tensor fields. The complete system of differential identities fulfilled by the 
invariants mentioned is found and it is proved that these invariants 
depend on the tensor quantities only. 

1. INTRODUCTION 

Krupka and Trautman have given a general method for the description 
of all generally invariant functions of the components of geometrical objects 
and their derivatives of arbitrary degree (Krupka and Trautman, 1974; 
Krupka, 1974). Later on this method was successfully applied to the in- 
variants of second degree of the metrical tensor field (Krupka, 1976; Krupka, 
1978). Hereby the full system of differential identities fulfilled by the invariants 
mentioned has been written. The maximal number of functionally independent 
invariants has been found and some concrete basis of this system has 
been constructed. An analogical program has been also realized for 
invariants of the first degree of the components of metrical tensor and con- 
nection (Hor~ik and Krupka, 1978). The physical meaning of invari- 
ants consists in the fact that they play the role of Lagrangians in the 
theories based on validity of variational principle, such as, for example, 
Einstein's theory in the first and the Einstein-Cartan theory in the second 
case. 

The object of the present paper is to study further possibilities of 
the Krupka-Trautman method, especially for the situation arising in 
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general relativity in the presence of nongravitational fields. We are con- 
cerned with invariants depending not only on metrical field, but also 
on some other tensor fields and their derivatives up to second degree. 
After an examination of the problem we ended by drawing the following 
conclusion. 

The above-mentioned invariants depend on the tensor quantities only 
--i.e., on the metrical tensor, on the curvature tensor, and on some other 
tensor fields and their covariant derivatives of the first and of the second 
degree. Thus we managed to reduce the whole problem of the finding of 
invariants to the problem of finding invariants of given tensor which can be 
solved by the known classical methods (Dieudonn6 and Carrell, 1971). As 
a further corollary of the conclusion mentioned we are able to determine the 
number of functionally independent invariants. 

Let Us note that the present work stands in close connection with the 
quoted works of Krupka (Krupka, 1976; Krupka, 1978); and for that reason 
we do not need to occupy ourselves in detail with the theory there already 
explained. 

2. FUNDAMENTAL STRUCTURES 

We shall study invariant functions of fibered manifolds with the basis 
of dimension n and with typical fiber which is the Cartesian product of the 
member T,2(R "* (D R"*) (corresponding to the metrical tensor field and its 
derivatives up to the second degree), arbitrary number of members T,~2(R) 
(corresponding to scalar fields), and arbitrary number of members 
T,~2(R "* |  | R"*) (corresponding to the covariant tensor fields of 
arbitrary degree). The presence of the metric makes it possible for us to take 
into consideration merely covariant fields. 

For brevity let us limit ourselves to the case of fundamental structures 
for the determination of generally invariant Lagrangians dependent on the 
metrical field and on some vector field. (The general case of an arbitrary 
number of tensor fields will be discussed later.) In the given case a typical 
fiber will be 

Q = T,2(R n* Q R '~*) x Tn2(R "*) 

Let us denote canonical coordinates on T,,2(R "* (D R"*) as g~j, g~j,u, 
g~s.kt and canonical coordinates on T,,2(R "*) as A~, A~,j, A~,jk. On the manifold 
Q the transformation group L, 8 of all invertible 3-jets with the source and 
the target in the point 0 ~ R" acts in a natural way. 

In conformity with Krupka's work (1978) let us introduce on 



On the Generally Invariant Lagranglans 679 

Tn2(R n* Q) R n*) new coordinates g~j, I'~.j~, R~jk~, S~,jk~, where 

gtj = g~j, r~,jk = �89 + g~k,j -- gjk,~) 

R~j~Z = �89 + gjk.~, - gtk,jz --  g~z,~k) 

+ �88 + gm~,J - -  g jk ,m)(gn, ,z  + grit,, - -  gt t ,n)  

- -  (g..~.' + g~z.J --  gs~..)(g.~.k + g.k . t  --  gtk. .)] 

S,,jk, = �89 + g,t.J~ + g,k,J,) -- ~(gj~.,z + gj,.,~ + g~,,,~) 

To  obtain a full system of  coordinates on Q let us add new coordinates  
_~, A~.~, A~;<~:~>, where 

X~ = A~, A~;~ = A~,~ - �89 + g~j,~ - g~,~)A~ 

A~;(/:k) = A~,y~ --  ~tgn~ + go1.i - gty.o) + ~jm(go~.u + gou,t - gtu.o)] 

+ gm~ + go~,y - g~,o)}Am.m 

+ (3gom,y + go~.m -- gm~,o)(gn~,~ + gn~,~ -- g~.~)  

+ 2(go~.,. + go.~,~ -- g. . ,o)(g.~,~ + g.~.~ -- g ~ . . ) ]  

-- 2gmt(2gmi,j~ + g~.~U + gm~.~ -- g~.m~ -- g~k.m~)}A; 

Here g~ is defined by the relations g~gy~ = 8~ ~. Consequently A~;~ are 
usual "covar iant  derivatives" o f  vector  field and A~ ;(~;~> is symmetrized sum 
of  the second "covar iant  derivatives." 

Inverse t ransformations are (in the ne ighborhood o f  the points where 
det g~ # 0) 

g~ = ~ ,  g~j.~ = P~,~ + P~.~ 

+ �89  + Pm,~r~,~ - 2P~,~r . ,~)  

d i  = .4~, d~,~ = A~:~ + g ~ P ~ . ~ d k  

A~,~ = A~:<~:~) + [g~~  + F o . ~  ~) + g ~ ~  

+ ~sg~m[6Sm.~ --  Rijm~ -- R~k~  

- 2 g " O ( r o , ~ T . , , ~  + ro.m~r..,~ + 

3. F U N D A M E N T A L  VECTOR FIELDS 

In this par t  we shall study the natural  action o f  L .  a on Q. We shall 
find the full system of  differential identities for  the invariants o f  this 
action. 

Let  us denote  canonical coordinates on L ,  a as a / ,  aJk, aJk~. Let  us write 
the action o f  the group L .  3 on Q in the coordinates g~j, I'~a~, R~j~, S~,jk~, 
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~,, A,:~, A~;o;~ ). It holds that 

.~  = a ~ ,  A~:~ = a~a]A~;~, A~:(~:~) = a/a~ma~"A.(,~:.) 

R~m = a, ma~na2a~VRmnov 

S~.~ = ai=a~"a~~ + {a~(a~,a~" + a~a~" + alua~) 
+ �89 ~ + a~a~"a? + a~a?a~ ~ 

+ ~a~"(a~a~ ~ + a?~a~ ~ + a~a~~ 
ram a"  m n a m a n m n ~ 

+ t m , + ~(a .a~ + ~ ~ + a~a~3]g.~. 

The fundamental vector fields corresponding to presented relations are 
characterized in Krupka's work (1978). Let us denote them as Y~,~, El k, Z{~'. 
It holds for these fields 

where 
t t z/=eg;,~__~__ erk,__2 a ~R~,,~,, ~ esk,... 

~a] Og~l + Oaj ~ OFk.l~ + Oay ~ OR~m. + Oa~ ~ OS~,~ 

OA~, 0 OA'~:~ 0 0A~:a;m ) 0 
~F*~ = 0a~ "--r ~A'---~ + 0a~ - -7"  0A~.---~ + ~a~ - - - r -  ~A~;(i:,.) 

z,,~ = z{  ~ = o r ; . . ,  o os;...______o 
OaJ~ oPz.=. + Oa~ oSz,~.o 

Z{kl= =~k,= eS'~,.o. 0 

(the derivatives are considered in the unit point e = jo3ideL,,8; i.e., after 
their calculation we put a / =  8/, a~ = 0, a]jk = 0. 

The quantities E,;, E{ k, E[ ~* were calculated in Krupka (1978). For ~b, j we 
obtain 

0 0 0 0 
. r ;(k :z) 

It would be suitable to introduce new fields 

(3.1) 

x,~ = �89 + xJ.O, x,~ = �89163 - 9"J.3 
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where 
~t.j = - gtkgjz Z~'z 

= g  (z2 ar'.o,aa, I:,.o, ~..o,~1 
= .~.~.' + �89 

It follows therefore that 

[E~.jk,, E~.sk, E~, E,~ are calculated in Krupka's work, ~ is given by (3.1)]. 
The theorem following from our considerations runs therefore as follows: 
In the neighborhood of every regular point of the manifold Q = 

T,~2(R "* (3 R ~*) x T,2(R "*) the Lie algebra en%(Q) is spanned on the vector 
fields 

0 0 
aS~,j~z' OP~.jk 

0 0 
Z~ = eg, s (g, nRjk,m + gj,~l~,,) OR,,~,, �88 (g'k~bJ~ + g~k~b'k) (3.2) 

0 
Z6 = (g,,Rj~,rn - gj,R,k,m) ~ + �88 ( g , ~  - g~b, ~) 

Every generally invariant function Se defined on some open L,  ~ invariant 
neighborhood of a regular point of the manifold Q fulfils the system of 
equations 

Z"~(s = 0, Z ' .~(~)  = 0, Z~(Le) = 0, Z ~ ( ~ )  = 0 (3.3) 

and--on the contrary--every function that fulfils this system is generally 
invariant. 

It means that every generally invariant function La depends merely 
on gm R ~ ,  A~, &;~, A~;<~:~>, i.e., on tensorial quantities only. 

4. DISCUSSION 

In the case of an arbitrary number of tensor fields of arbitrary degree 
it is again possible to introduce instead of the canonical coordinates T,r..~., 
T,1 ...... t, T~l...a, as new coordinates ~ r . . , ,  = T~r..~, T~r..~,:i, T~r..~,x~:J) for 
every tensor field. In the transformation relations for these quantities the 
group L,  3 acts by means of its components aj ~ only. All the previous relations 
and conclusions remain valid with one exception, namely, the expression for 
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~b~ ~ will become in general more complicated. For example, for the tensor 
field of second degree it will be 

0 0 0 ~ 0 
OAkt:j 

a a 
+ A , k : ( t : m ) -  + A ~ , . ( z : m ) -  + 2Akz.(,.m) (4.1) 

~Atk :(t ;m) ' aAtcj.(z :m) " " aAk~;(i:m) 

and so on. Particularly, the conclusion remains that the generally invariant 
Lagrangian is dependent on tensorial quantities only. 

The maximal number of functionally independent invariants is equal 
to the difference of the dimension of the manifold Q and of the rank of the 
discussed system of vector fields Z ~'jk', Z *'sk, Z~, Z 5 in their maximal points. 
In the case where the dimension of basic manifold n = 1, this rank is clearly 
maximal In the case n /> 3, maximality of the rank (at least in the neighbor- 
hood of some points) was proved for the typical fiber T , Z ( R " * Q  R"*)  
(Krupka, 1976). Our "extension" of the typical fiber cannot change this fact. 

It remains to discuss the case n = 2. For the typical fiber T2a(R 2.  G R ~*) 

it holds E~7 = 0 and the rank of the system E ~'jk', E l'jk, E~, E 5 is smaller 
by 1 than the maximal one; as, however, Z~ is not identically zero, the rank 
of the system (3.2) for typical fiber Q will be maximal in this case as well. 

It  follows therefore that the maximal number of functionally inde- 
pendent invariants is 

X = -a~n(n - 1)(n -- 2)(n + 3) + k[1 + n + �89 + 1)] (4.2) 

where k is the number of independent components of discussed (non- 
metrical) fields. Let us note that in the case k = 0 (the metrical field only) 
the expression presented is not valid for n = 2. 

Preceding results can be also applied to the case where s is dependent 
on the first derivatives of nonmetrical fields only. The identities (3.3) remain 
then valid after omitting the members with second derivatives of the non- 
metrical fields. The number of functionally independent invariants will be 
smaller as (4.2) by �89 + 1). 

However, in relativistic theories it is often supposed that Se = s + Lag, 
where ~ = s g~j,k, g~j,kl) and ~ = Se2(g~j , g~j,~, A~, At,j). Here, s is 
the "gravitational" and s the "material" part of the Lagrangian. The 
independency of s on the second derivatives of the metrical tensor field 
can be considered as the manifestation of the so-called principle of minimal 
gravitational coupling. In this case we arrive at the conclusion that Lfz 
depends only on g~j, A~, A~ :j in the case of the vector field (and analogically 
for an arbitrary number of tensor fields). 

Let us reflect on the number of independent invariants of g~j, A~, A~:j 
(i.e., independent Lagrangians of the type ~ ) .  We choose on the manifold 
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T,~(R '~* (S) R"*) x T,~(R '~*) such points, where A,;j = 3,j, A, = 0, g,j = 0, 
and g,  # gjj for i # j. Then we obtain from (3.2), (3.1) 

As i > j,  it is clear that the system of  the vector fields Z~ has the maximal 
rank in the neighborhood of the points considered. 

In the case Of tensor field of  the second degree let us choose on the 
manifold T,~(R "* (3 R '~*) x T,~I(R n* | R"*) such a point, where A~j = 8~j, 
A~:~ = 0, g~j = 0, and g ,  # gjj for i r j. It follows from (3.2), (4.1) 

4Z~ = (gu - g j j ) ( ~  + ~-~)  

so that the rank is again maximal. In the case of  a tensor field of  a higher 
degree let us choose Aw..~, = 3~z. 3 ~ . . .  8~, ,  A~...t~:~ = 0, g~ = 0 for 
i # j and we obtain 

4E/~ --- 0 + ~Tm...-----~ 

- ~ + *T,j~...---~ + " "  + gJJ L,~  t . . . i . ~ /  

Clearly the rank of the system is again maximal. 
The maximal number of  functionally independent invariants of  tensor 

fields and the metric of  first degree (with the exception of scalar fields only) 
is consequently 

k ( ,  + 1) - ~n(n - 1) 

where k is the number of  independent components of the fields studied. 
For  example, in the case of  a vector field, where k = n, this number is 
equal to �89 + 3), which in the physically significant case n = 4 gives the 
result 14. [Let us note that according to the preceding argument this number 
is equal to the number of  invariants of  vector (A~), tensor of second degree 
(A~ j), and the metrical tensor g~j.] 

For  the case of scalar field ~ it holds 

0 

In this case the number of invariants is equal to the number of  invariants 
of scalar % vector (~,~), and the metrical tensor g~j, i.e., it is equal to 2. 
Finally, let us consider the case of  the k scalar fields. Then the number of  
invariants is equal to the number of invariants of  k vector fields _<1) ~<k) 
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and the metrical tensor g~k increased by the number  o f  scalar fields con- 
sidered, i.e., �89 + 3) for  k ~< n and k(n + 1) - �89 - 1) for k t> n. 
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